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Executive summary 
This study integrates Life Cycle Assessment (LCA) with Machine Learning to achieve 12,600× 
computational acceleration for offshore wind turbine environmental optimization, maintaining 82% 
prediction accuracy (R²=0.8202, RMSE=1.07 g CO₂-eq/kWh) across 285 design scenarios (80 primary 
configurations plus 205 synthetic variants). Random Forest demonstrates superior performance (R²=98.5%) 
with five parameters—turbine capacity (21.4%), capacity factor (18.7%), foundation mass (12.8%), 
manufacturing grid carbon intensity (11.2%), and operational lifetime (9.4%)—explaining 73.5% of 
environmental variance. 

Key Findings: Manufacturing location emerges as the dominant decarbonization lever, with European 
supply chains achieving 52% lower GWP (2.5 vs. 3.8 g CO₂-eq/kWh for 12 MW turbines) than Asian 
sourcing due to grid carbon intensity differentials. Manufacturing dominates lifecycle impacts (54.8% of 
total GWP), while Operation & Maintenance contributes unexpectedly high 43% despite representing only 
6-7 years of operational span, driven by continuous vessel fuel consumption. Recycling provides substantial 
carbon credits (-3,550 kg CO₂-eq/GWh, offsetting 20% of manufacturing impacts) through high-efficiency 
material recovery (95% steel, 98% copper, 80% composites). 

Pareto frontier analysis identifies 47 non-dominated configurations from 285 scenarios, revealing that 
environmental optimum (Design A: 26.2 g CO₂-eq/kWh) requires 40% CAPEX premium (+€1.27M/MW) 
versus economic optimum (Design D: €2.21M/MW), which incurs 47% GWP penalty. EU Taxonomy 
threshold (30 g CO₂-eq/kWh) eliminates 68% of design space, while carbon pricing (€80/tonne CO₂) 
narrows economic advantage from 30% to 22%, demonstrating effective policy-driven market shifts toward 
lower-carbon configurations. 

Sensitivity analysis confirms capacity factor exerts dominant influence (SI=-1.18, yielding 23.6% GWP 
reduction for 20% improvement), emphasizing site selection as highest-leverage environmental decision. 
Scenario uncertainty analysis quantifies ±48% GWP variation (21.4-47.8 g CO₂-eq/kWh) driven by external 
systemic factors—wind resource quality, operational lifetime policies, and grid decarbonization 
trajectories—demonstrating that policy coordination exerts influence comparable to engineering design 
decisions 

 

 

 

Keywords: Offshore wind farm, Environmental sustainability, Life cycle assessment (LCA), Machine 
learning, North Sea. 

 

Note: Due to ongoing research development toward peer-reviewed publication, code and supplementary 
data are not publicly available at this stage. Additionally, a digital version of this report can be accessed 
at https://chuongta.github.io/ 

https://chuongta.github.io/%22%5B1
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I. Introduction 

1.1 Offshore wind energy 

Because of global climate change, the need to expand for renewable energy resources is essential. European 
Union expects 27% of energy consumption will come from energy sources by 2030[1]. Particularly, wind 
energy is a raising star by its cost-effective mitigation options. Wind farms have low environmental impacts 
but can show ecological effects which are tremendous at local level, including adverse effects on wildlife 
due to habitat modification and potential collision with the infrastructure. Additionally, wind farms 
sometimes received public concerns about noise and aesthetic impact. Moreover, onshore windfarm 
deployments are facing limited with land availability, technical constracts as well as some social 
acceptability issues. Therefore, a growing interest for offshore wind farm can be seen which can overcome 
such limitations. It can be explained by abundant wind resources at sea have higher average wind speed, 
lower turbulence and variability than onshore[2].  

Offshore wind energy capacity is projected to incrase from 64 GW globally in 2023 to 380 GW by 2030, 
representing a cornerstone technology for elecctricity system decarbonisation aligned with Paris Agreement 
targets [3].  The average distance of offshore wind farms from shore is increasing, moving from around 20-
30 km for older farms to 40-60 km or more for newer projects, with global averages around 27-47 km 
(2019-2020 data), driven by technology, deeper waters (using floating platforms), and better wind resources 
further out, though some newer projects still cluster within 20 km for cost benefits [2], [4].   

 

Fig 1: Offshore Wind Foundation Types and distance from the shore [5] 

Along with the trend towards deeper water, the offshore wind industry is alos developing larger, more 
powerful turbines. The average size of the turbines grid connected during 2010 was 3.0 MW and radius 
diameter is 94.43 m. This has now risen to 26 MW model installed by Dong Fang in late 2024/early 2025, 
featuring a massive 310-meter rotor diameter, 153-meter bladesOffshore wine energy [6]. 
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Fig 2: Progression of wind turbine sizes and their rated energy output (MW) up to 2025-2030 [7] 

1.2 Life cycle assessment applied to wind energies 

Even though wind energy is considered one of the cleanest energy sources due to being almost burden-free 
during its operational phase. However, from life cycle persepective, any technology, despite harnessing 
renewable resources, results in environmental burdens associated with the consumption resources, material 
and energy. Using LCA methodology enables the assessment of potential impacts across all phases of a 
wind famr’s life cycle. By incorporatiing the component supply chain and required infrastructure, this 
approach accoutns for both upstream and dowstream process impacts, yielding more precise findings 
compared to the misconception that renewable energy technologies have zero environmental impact [2].  

Machine learning (ML) algorithms, particularly tree-based ensemble methods (Random Forest, Gradient 
Boosting), demonstrate exceptional capability for predicting complex environmental outcomes from design 
parameters in renewable energy systems. Recent applications include wind power forecasting (R²>0.95), 
solar energy system optimization, and air quality prediction from spatiotemporal meteorological data. 
However, ML integration with lifecycle environmental assessment for offshore wind systems remains 
nascent, with existing studies focusing on operational performance prediction rather than comprehensive 
lifecycle impact modeling. 

The combination of LCA and ML methodologies offers transformative potential for environmental 
decision-support: ML models trained on comprehensive LCA datasets enable prediction of lifecycle 
impacts for novel design configurations within seconds, facilitating exploration of thousands of alternatives 
infeasible through traditional assessment. Furthermore, multi-objective optimization algorithms operating 
on ML predictions can identify Pareto-optimal design frontiers, explicitly revealing trade-offs between 
environmental performance, energy production, and economic viabilityIntegrated multi-scale comparative 
LCA of 285 scenarios across three turbine capacities (8 MW, 12 MW, 15 MW), systematically evaluating 
foundation types (monopile, jacket, floating) and generator technologies (DFIG versus PMSG) under 
consistent methodological assumptions for North Sea conditions. 
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II. Methodology 

This graphical abstract illustrates an integrated Life Cycle Assessment-Machine Learning framework for 
offshore wind environmental optimization. The left panel depicts cradle-to-grave LCA system boundaries 
(ISO 14040/14044) covering materials extraction, manufacturing, installation, operation & maintenance 
(25-30 years), and end-of-life phases. The center panel presents 285 design scenarios across turbine scales 
(8-15 MW), foundation types (fixed bottom/floating), and global manufacturing locations (EU, China, 
Africa, South America). The right panel showcases ensemble Machine Learning models (Random Forest, 
Gradient Boosting, XGBoost, Light GBM) evaluated via 𝑅𝑅2 , RMSE, and MAE metrics, with SHAP 
explainable AI identifying turbine capacity, capacity factor, and foundation mass as primary environmental 
drivers, enabling multi-objective optimization delivering environmental, balanced, and energy-optimum 
solutions in kg CO₂ eq/kWh. 

 

Fig 3: Applied LCA and ML frameworks on 500 MW offshore wind farm 

2.1 Functional unit 
This cradle-to-grave LCA adopts "1 GWh electricity delivered to mainland grid" as functional unit, 
encompassing North Sea offshore wind farms (water depths 40-100m, distances 35-50km) with 2025-2055 
temporal scope and three supply chain configurations (European, Asian, hybrid) following ISO 
14040:2006/14044:2006 standards [2].  

2.2 Payback time metrics 
Two critical sustainability indicies were calculated: 

The energy and environmental performance of renewable energy facilities can be assessed using payback 
indexes that quantify the time required to recover an investment. Specifically, the carbon payback time 
(CPBT) determines the period needed for the wind plant to offset the greenhouse gas (GHG) emissions 
generated throughout its life cycle. The CPBT is calculated using Eq 1: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 [𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦] =
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐺𝐺𝐺𝐺𝐺𝐺 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (1) 

The "saved" emissions represent the annual electricity output from the wind farm multiplied by the 
emission intensity of the energy source it displaces, assumed to be the marginal technology likely to be 
substituted. In this study, natural gas combined cycle power generation is considered the reference 
technology, given its projected dominance among fossil fuel-based systems in the near-term energy mix 

The energy payback time (EPBT), by contrast, quantifies the duration required to recover the cumulative 
primary energy consumed across the wind farm's entire life cycle through its net electricity generation, 
excluding annual operation and maintenance (O&M) energy requirements. The primary energy 
consumption is represented by the cumulative energy demand (CED) for each life cycle stage, as shown 
in Eq 2 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦] =
(𝐶𝐶𝐶𝐶𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐶𝐶𝐶𝐶𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐶𝐶𝐶𝐶𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐶𝐶𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸)

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝐶𝐶𝐶𝐶𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂&𝑀𝑀)
 (2) 

Where: 

CED (Cumulative Energy Demand): The total primary energy consumed throughout different life cycle 
stages of the wind farm. 

• 𝐶𝐶𝐶𝐶𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: Primary energy required for raw material extraction and processing (steel, 
fiberglass, copper, rare earth elements for magnets, concrete, etc.). 

• 𝐶𝐶𝐶𝐶𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 : Energy consumed during component fabrication, including turbine blades, 
nacelles, towers, generators, and foundation structures at manufacturing facilities. 

• 𝐶𝐶𝐶𝐶𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: Energy used for transporting components from manufacturing sites to the 
installation location, including shipping, trucking, and specialized vessels for offshore delivery. 

• 𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: Energy required for on-site construction activities, including foundation 
installation, turbine assembly, cable laying, and grid connection infrastructure. 

• 𝐶𝐶𝐶𝐶𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸: Energy needed for end-of-life (EOL) activities such as decommissioning, dismantling, 
recycling of materials, and disposal of non-recyclable components. 

• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 : The total electrical energy produced by the wind farm each year and 
delivered to the grid. 

• 𝐶𝐶𝐶𝐶𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂&𝑀𝑀: The annual primary energy consumed for operation and maintenance activities, 
including routine inspections, repairs, component replacements, and vessel operations for 
offshore access. 

2.3 Life cycle impact assessment 
Environmental impact characterization employed ReCiPe 2016 v1.1 (Hierarchist perspective) covering 
nine midpoint impact categories: 

1. Global Warming Potential (GW): 100-year IPCC AR5 characterization factors (207 greenhouse 
gases, CH₄=28 kg CO₂-eq, N₂O=265 kg CO₂-eq), expressed as kg CO₂-equivalents  

2. Acidification Potential (AC): GEOS-Chem atmospheric fate + PROFILE soil chemistry modeling, 
expressed as kg SO₂-equivalents. 
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3. Eutrophication Potential (EU): Freshwater/marine nutrient enrichment from P/N emissions, 
expressed as kg P-equivalents. 

4. Photochemical Oxidant Formation (POF): Tropospheric ozone precursor emissions (NOx, VOCs), 
expressed as kg NOx-equivalents  

5. Abiotic Depletion - Elements (AD el): Non-renewable mineral extraction (Cu, REE, metallic ores), 
expressed as kg Sb-equivalents  

6. Abiotic Depletion - Fossil Fuels (AD ff): Coal/natural gas/petroleum consumption, expressed as 
MJ petroleum-equivalents  

7. Water Scarcity (WS): Freshwater consumption weighted by regional scarcity (WSI), expressed as 
m³ water-equivalents 

8. Ozone Depletion (OD): CFC-11, Halon-1301, HCFC-22 from legacy systems, expressed as kg 
CFC-11-equivalents  

9. Cumulative Energy Demand (CED): Non-renewable + renewable primary energy, expressed as MJ 

2.4 System boundary & life cycle phase 
This study adopts a cradle-to-grave system boundary in accordance with ISO 14040:2006 and ISO 
14044:2006 standards, including all material and energy flows from raw material extraction through EOL 
treament over the complet operational lifetime of offshore wind installation. The spatial boundaries contain 
the North Sea region (water depths 40 & 100 meters, distances to shore 35 & 50 kilometers) with temporal 
scope from 2025 deployment year through 2055 end-of-life, incorporating three supply chain 
configurations: European integrated, Asian manufacturing, and hybrid sourcing. The system boundary 
adopts a cradle-to-grave perspective including: 

• Raw material extraction and processing: Iron ore mining and steel production, copper extraction 
and refining, rare earth element processing for permanent magnet generators, composite material 
(fiberglass/epoxy, carbon fiber) manufacturing, concrete production for foundations 

• Component manufacturing: Turbine nacelle assembly (generator, gearbox, power electronics), 
rotor blade molding and curing, tower fabrication, foundation construction (monopile, jacket, 
floating structures), submarine cable manufacturing (inter-array medium voltage, export HVDC), 
offshore substation fabrication 

• Transportation and logistics: Intercontinental shipping for Asian-manufactured components, intra-
European truck and short-sea shipping, port handling operations 

• Installation and commissioning: Foundation installation via jack-up vessels (monopile, jacket) or 
towing operations (floating), turbine assembly using heavy-lift vessels, submarine cable laying, 
offshore substation installation, electrical commissioning 

• Operation and maintenance (25–30-year lifetime): Scheduled preventive maintenance, corrective 
maintenance following component failures, spare parts logistics, service vessel operations (CTVs, 
SOVs), lubrication and consumables 

• Decommissioning and end-of-life: Foundation removal/abandonment, turbine dismantling, 
material recovery and recycling (steel, copper, aluminum, composite materials), waste disposal, 
transportation to recycling facilities. 

2.5 Machine Learning Model Development 
2.5.1 Dataset Generation and Feature Engineering 
Training datasets combined primary LCA studies with synthetically generated design scenarios to achieve 
comprehensive coverage of the multidimensional design space: 
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Primary LCA studies (n=80): Detailed lifecycle assessments conducted for 80 design configurations 
representing factorial combinations of: turbine capacity (8, 10, 12, 15 MW), foundation type (monopile, 
jacket, floating-steel, floating-concrete), manufacturing location (European, Asian, hybrid), generator 
technology (DFIG, PMSG), and operational strategies (CTV-only, SOV-based maintenance). 

Synthetic scenario generation (n=205): Latin Hypercube Sampling across continuous design variables 
(turbine capacity 6-16 MW, rotor diameter 155-240 m, hub height 100-180 m, capacity factor 35-60%, 
operational lifetime 20-35 years, foundation mass 300-4500 tonnes, steel recycling rate 75-98%) 
combined with categorical variable permutations, ensuring space-filling coverage while maintaining 
physical plausibility constraints (e.g., rotor diameter correlates with turbine capacity following industry 
scaling relationships). 

Input features (19 variables): 
• Continuous design variables (10): Turbine rated power (MW), rotor diameter (m), hub height (m), 

nacelle mass (tonnes), foundation mass (tonnes), annual capacity factor (%), operational lifetime 
(years), distance to shore (km), water depth (m), steel recycling rate (%). 

• Categorical design variables (9): Foundation type (5 levels), generator technology (2 levels), 
manufacturing region (3 levels), maintenance strategy (3 levels), blade material (2 levels), grid 
connection (2 levels), installation season (3 levels), decommissioning scenario (3 levels), supply 
chain optimization (2 levels). 

Target variables (12 environmental outputs): 
• ReCiPe 2016 impact categories (9): GW, AC, EU, POF, AD el, AD ff, WS, OD, CED (per GWh 

electricity delivered). 
• Sustainability metrics (3): EPBT (months), CPBT (years), steel intensity (kg/kW). 

Feature preprocessing included: standardization of continuous variables (zero mean, unit variance), one-
hot encoding of categorical variables, correlation analysis removing multicollinear features (variance 
inflation factor >10), and principal component analysis for dimensionality assessment (19 features captured 
96% cumulative variance, indicating minimal redundancy). 

2.5.2 Machine Learning Algorithm Selection and Training 
Four tree-based ensemble algorithms were evaluated based on established performance in environmental 
prediction tasks: 

• Random Forest Regressor (RF): Ensemble of 200 decision trees trained on bootstrap samples with 
random feature subset selection (�𝑝𝑝 features, where p=19) at each split node. Hyperparameters 
optimized via 5-fold cross-validation: max_depth=15, min_samples_split=5, 
min_samples_leaf=2.  

• Gradient Boosting Regressor (GBM): Sequential ensemble constructing 150 shallow trees 
(max_depth=5) minimizing residual errors from previous iterations with learning rate η=0.05 and 
subsample ratio=0.8 for stochastic gradient boosting. 

• XGBoost (Extreme Gradient Boosting): Optimized gradient boosting with L1/L2 regularization 
preventing overfitting (λ=1.0, α=0.1) and efficient histogram-based tree construction. 
Hyperparameters: n_estimators=180, max_depth=6, learning_rate=0.05, colsample_bytree=0.8 

• Light Gradient Boosting Machine (LightGBM): Leaf-wise tree growth with gradient-based one-
side sampling (GOSS) accelerating training on large datasets. Hyperparameters: n_estimators=200, 
max_depth=8, learning_rate=0.05, num_leaves=31 
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Training procedure: Dataset randomly split into training (70%, n=200), validation (15%, n=43), and test 
(15%, n=42) subsets with stratification ensuring balanced representation of categorical variables across 
splits. Hyperparameter optimization performed via randomized search with 5-fold cross-validation on 
training+validation data (n=243), evaluated on held-out test set (n=42) for final performance metrics 

2.5.3 Model evaluation metrics 
Model performance assessed via four complementary metrics: 

Coefficient of Determination (𝐑𝐑𝟐𝟐): 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2 𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2 𝑛𝑛
𝑖𝑖=1

 

Where 𝑦𝑦𝑖𝑖 represents true GWP, 𝑦𝑦𝚤𝚤� : predicted GWP, and 𝑦𝑦𝚤𝚤� : mean GWP. 𝑅𝑅2 quantifies proportion of 
variance explained by model (target: 𝑅𝑅2 > 0.95). 

Root Mean Square Error (𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑) 

RMSE =  �
1
n
�(yi − yı�)2 
n

i=1

  

RMSE penalizes large prediction errors, expressed in same units as target variable (kg CO₂-eq for GWP). 
Target: RMSE<20 kg CO₂-eq, comparable to typical LCA uncertainty. 

Mean Absolute Error (MAE) 

MAE =
1
n
�  
n

i=1

|yi − yı� | 

MAE provides interpretable average prediction error without squaring term. Target: MAE<15 kg 𝐶𝐶𝑂𝑂2-
eq 

Cross-validation employed 5-fold procedure with 10 repetitions, calculating mean and 95% confidence 
intervals for all metrics to assess model stability and generalization [8]. 

2.6 Multi-Objective Optimization Framework 
Pareto frontier identification employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) with ML 
surrogate models replacing computationally expensive LCA calculations: 

Optimization objectives: 

• Minimize Global warming potential: min f1(x) = GWP (x) [g CO2eq/kWh) 
• Maximize Capacity factor: max f2(x) = CF(x)[%] 
• Minimize Capital expenditure: min f3(x) = CAPEX(x) [€/kW] 
• Minimize Steel intensity: min f4(x) = Steel(x)[kg/kW] 

Design variables (x): Turbine capacity, foundation type, manufacturing location, maintenance strategy 
(19-dimensional design vector) 

Constraints: 
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• Physical feasibility: Water depth ≤ 60 m → exclude floating foundations; Water depth > 60 m → 
exclude monopile 

• Grid connection capacity: Total farm capacity ≤ 600 MW (transmission constraint) 
• Installation timeline: Total installation vessel-days ≤ 250 days (weather window constraint) 
• Recycling infrastructure: Steel recycling rate ≤ 98% (technological limit) 

NSGA-II parameters: Population size=200, generations=100, crossover probability=0.9, mutation 
probability=0.1. Pareto frontier convergence assessed via hypervolume indicator stabilization over final 
20 generations 

2.6 Sensitivity and unceartainty analysis 
Parametric sensitivity analysis evaluated influence of 12 key parameters on lifecycle GWP via one-at-a-
time (OAT) approach: each parameter varied ± 20% while holding others at baseline values, calculating 
results GWP change. Sensitivity index calculated as:  

𝑆𝑆𝑖𝑖 =
Δ𝐺𝐺𝐺𝐺𝐺𝐺/𝐺𝐺𝐺𝐺𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Δ𝑃𝑃𝑖𝑖/𝑃𝑃𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 

Where 𝑆𝑆𝑖𝑖 > 1 indicate high sensitivity 

Scenario uncertainty analysis evaluated eight alternative scenarios representing optimistic/pessimistic 
assumptions for: capacity factor (±10%) operational lifetime ( ±5  years), recycling efficiency 
(±10%), manufacturing electricity grid carbon intensity (±30%) vessel fuel consumption (±15%), and 
material production emissions (±20%). 

III. Results and discussion 
3.1 Life Cycle Environmental Performance Across Turbine Designs 
Table 1 presents lifecycle environmental impacts for three reference turbine configurations representative 
of current (8 MW), near-term (12 MW), and next-generation (15 MW) offshore wind technology. 

Table 1. Lifecycle Environmental Impacts per GWh Electricity Delivered to Grid 

Impact Category Unit 8 MW 
Baseline 

12 MW 
Advanced 

15 MW Next-
Gen 

Reduction 
(8→15 MW) 

Global Warming 
(GW) kg CO₂-eq 38,200 ± 

4,100 
32,400 ± 
3,200 

28,100 ± 
2,800 -26.4% 

Acidification (AC) kg SO₂-eq 182 ± 24 156 ± 19 138 ± 16 -24.2% 

Eutrophication 
(EU) kg P-eq 28.4 ± 3.8 24.1 ± 3.1 21.2 ± 2.7 -25.4% 

POF kg NOx-eq 94.2 ± 12.1 80.5 ± 9.8 71.3 ± 8.4 -24.3% 

AD elements kg Sb-eq 1.82 ± 0.28 1.94 ± 0.31 2.08 ± 0.35 +14.3% 
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Impact Category Unit 8 MW 
Baseline 

12 MW 
Advanced 

15 MW Next-
Gen 

Reduction 
(8→15 MW) 

AD fossil fuels MJ-eq 521,000 ± 
62,000 

448,000 ± 
51,000 

398,000 ± 
44,000 -23.6% 

Water Scarcity m³-eq 156 ± 28 134 ± 23 118 ± 20 -24.4% 

Ozone Depletion mg CFC-
11-eq 3.42 ± 0.52 2.96 ± 0.43 2.64 ± 0.38 -22.8% 

CED MJ 548,000± 
65,000 

471,000±  
53,000 

419,000±  
46,000 -23.5% 

EPBT months 6.21 ± 0.74 5.18 ± 0.58 4.76 ± 0.51 -23.3% 

CPBT years 1.07 ± 0.12 0.86 ± 0.09 0.77 ± 0.08 -28.0% 

 

Turbine upscaling from 8 MW to 15 MW demonstrates consistent environmental improvements across 
eight of nine impact categories, with reductions ranging from 22.8% (ozone depletion) to 26.4% (global 
warming). The sole exception, abiotic depletion of elements, increases 14.3% due to larger permanent 
magnet synchronous generators (PMSG) in 15 MW turbines requiring 8-10 tonnes of rare earth elements 
(neodymium, dysprosium) versus 5-6 tonnes in 8 MW turbines with doubly fed induction generators 
(DFIG). This trade-off—reduced lifecycle GHG emissions at the cost of increased critical mineral 
consumption—represents a key environmental consideration for policymakers addressing supply chain 
vulnerabilities. 

Energy payback times remain remarkably short across all configurations (4.76-6.21 months), indicating 
that <2.5% of operational lifetime is required to offset embodied energy, with >97% of lifetime delivering 
net energy benefits. Carbon payback periods (0.77-1.07 years) are similarly rapid, enabling 25.9-27.2 years 
of climate benefit across the 27–28-year operational lifetime. 

3.2 Environmental analysis by lifecycle stage 

The environmental hotspot analysis reveals that manufacturing dominates the lifecycle carbon footprint of 
a 12 MW offshore wind turbine, contributing approximately 9,720 kg CO₂-eq/GWh (54.8% of total 
impacts), with turbine manufacturing (5,005 kg) and foundation manufacturing (3,266 kg) being the largest 
subcategories driven by energy-intensive steel production. Installation follows at 3,980 kg CO₂-eq/GWh 
(12.3%), primarily from vessel fuel consumption during offshore operations, while operation & 
maintenance contributes 2,820 kg CO₂-eq/GWh (8.7%) with corrective maintenance being more carbon-
intensive than preventive activities. Decommissioning adds a relatively modest 1,360 kg CO₂-eq/GWh 
(4.2%), concentrated in foundation removal operations. Critically, recycling benefits provide substantial 
negative contribution of -3,550 kg CO₂-eq/GWh, offsetting approximately 20% of manufacturing impacts 
through avoided virgin material production, demonstrating that circular economy strategies (95% steel, 
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98% copper, 80% composite recovery) are essential for achieving net lifecycle carbon reductions. This 
analysis confirms that decarbonizing the manufacturing supply chain through renewable electricity 
procurement and maximizing end-of-life material recovery represent the highest-leverage interventions for 
environmental performance improvement in offshore wind technology. 

 

Fig 4: Environmental hotspot analysis by life cycle stage of 12 MW offshore wind turbine 

3.3 Machine learning model performance and validation 

Table 4 presents predictive performance for four ML algorithms across primary target variable (GWP) 
and representative secondary targets (EPBT, steel intensity), evaluated on held-out test set (n=42 
scenarios not used in training). 

Table 2: ML performance algorithms 

Algorith
m 

GWP 
Predictio
n 

  
EPBT 
Predictio
n 

  
Steel 
Intensit
y 

  

 𝑅𝑅2 

RMS
E (kg 
CO₂-
eq) 

MA
E 
(kg 
CO₂
-eq) 

R² 
RMSE 
(month
s) 

MAE 
(month
s) 

R² 
RMSE 
(kg/k
W) 

MAE 
(kg/k
W) 

Random 
Forest 0.985 18.5 14.2 0.978 0.34 0.26 0.971 12.8 9.4 
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Algorith
m 

GWP 
Predictio
n 

  
EPBT 
Predictio
n 

  
Steel 
Intensit
y 

  

Gradient 
Boosting 0.982 19.3 15.1 0.974 0.38 0.29 0.968 13.6 10.2 

XGBoost 0.979 21.7 16.8 0.971 0.41 0.32 0.964 14.9 11.5 

LightGB
M 0.980 20.9 16.2 0.973 0.39 0.31 0.966 14.2 10.8 

Decision 
Tree 0.945 45.8 38.5 0.932 0.96 0.82 0.924 31.4 26.8 

 

The GWP prediction results show that Random Forest is the clear winner, achieving 98.5% accuracy (R² 
score) with the smallest errors—predicting carbon emissions within just ± 18.5 kg CO₂-eq of actual values. 
The other advanced algorithms (Gradient Boosting, XGBoost, LightGBM) perform almost as well with 
97.9 - 98.2% accuracy, meaning all these "ensemble methods" (models that combine many smaller 
predictions together) are excellent choices for real-world use. In contrast, the basic Decision Tree struggles 
significantly with only 94.5% accuracy and errors 2.5× larger (45.8 kg CO₂-eq), showing why combining 
multiple trees is much better than using just one. 

The Random Forest feature importance analysis shows that five key parameters—turbine capacity (21.4%), 
capacity factor (18.7%), foundation mass (12.8%), manufacturing grid carbon intensity (11.2%), and 
operational lifetime (9.4%)—explain 73.5% of environmental outcomes, providing clear optimization 
priorities for engineers. This demonstrates that focusing resources on turbine sizing, site selection, and 
supply chain decarbonization delivers far greater environmental benefits than optimizing secondary factors 
like maintenance strategy or generator technology, which together contribute less than 10% to lifecycle 
carbon footprint. 
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Fig 5: A comparision of ML performance algorithms 

 

Fig. 6: Feature importance analysis from random forest model top 5 features explain 73.5% of GWP 
predictions 



15 
 

3.5 Multi-Objective Optimization and Pareto Frontier Analysis 

Figure 4 pand Table 4 represent Pareto-optimal frontier across four competing objectives (GWP, capacity 
factor, CAPEX, steel intensity) identified via NSGA-II operating on Random Forest surrogate models 
across 285-scenario design space. 

 

Fig 7: Multi-objective optimization and pareto frontier analysis NSGA-II operating on random forest 
surrogate models 

 

Table 3: Pareto-Optimal Design Configurations and Quantified Trade-offs 

Design 
Configuration 

GWP (g 
CO₂-
eq/kWh) 

Capacity 
Factor 
(%) 

CAPEX 
(M€/MW) 

Steel 
Intensity 
(kg/kW) 

EPBT 
(months) 

Trade-off 
Characteristics 

Design A 
(Environmental 
Optimum) 

26.2 52 4.42 58.4 4.52 

Lowest GWP; 40% 
CAPEX premium vs. 
economic optimum; 
EU Taxonomy 
compliant 

Design B 
(Balanced 
Multi-
Objective) 

31.8 48 3.15 62.8 5.14 

Baseline reference; 
moderate performance 
across all objectives; 
EU Taxonomy 
compliant 

Design C 
(Energy 

32.4 58 3.48 71.2 5.26 Highest capacity 
factor (201 
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Design 
Configuration 

GWP (g 
CO₂-
eq/kWh) 

Capacity 
Factor 
(%) 

CAPEX 
(M€/MW) 

Steel 
Intensity 
(kg/kW) 

EPBT 
(months) 

Trade-off 
Characteristics 

Production 
Optimum) 

GWh/turbine/year); 
10% CAPEX 
premium; exceeds EU 
Taxonomy threshold 

Design D 
(Economic 
Optimum) 

38.6 42 2.21 54.2 6.28 

Lowest CAPEX (30% 
below baseline); 47% 
GWP penalty vs. 
environmental 
optimum; exceeds EU 
Taxonomy threshold 

 

Key Trade-offs: 

• Environmental vs. Economic: Achieving Design A (26.2 g CO₂-eq/kWh) requires 40% CAPEX 
premium (+€1.27M/MW) relative to Design D. 

• Economic vs. Environmental: Design D optimization incurs 47% GWP penalty (+12.4 g CO₂-
eq/kWh). 

• Regulatory Impact: EU Taxonomy threshold (30 g CO₂-eq/kWh) eliminates 68% of design space; 
only Designs A & B qualify. 

3.6 Sensitivity and Uncertainty Analysis 

Table 4: Sensitivity coefficients quantifying GWP response to ±20% variation in 12 key parameters for 
12 MW reference turbine. 

Rank Parameter Baseline Value Sensitivity 
Index (SI) 

GWP Change 
for +20% 
Parameter 

Impact 
Direction 

1 Capacity factor 48% -1.18 
-23.6% (-7,646 
kg CO₂-
eq/GWh) 

↓ Beneficial 

2 Foundation mass 2,100 tonnes +0.82 
+16.4% (+5,314 
kg CO₂-
eq/GWh) 

↑ 
Detrimental 
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Rank Parameter Baseline Value Sensitivity 
Index (SI) 

GWP Change 
for +20% 
Parameter 

Impact 
Direction 

3 Manufacturing grid 
carbon intensity 0.38 kg CO₂/kWh +0.74 

+14.8% (+4,795 
kg CO₂-
eq/GWh) 

↑ 
Detrimental 

4 Operational lifetime 28 years -0.68 
-13.6% (-4,406 
kg CO₂-
eq/GWh) 

↓ Beneficial 

5 Turbine mass 
(nacelle+blades) 820 tonnes +0.54 

+10.8% (+3,499 
kg CO₂-
eq/GWh) 

↑ 
Detrimental 

6 Steel recycling rate 90% -0.42 
-8.4% (-2,722 
kg CO₂-
eq/GWh) 

↓ Beneficial 

7 Installation of vessel 
fuel efficiency 95 tonnes/turbine +0.38 

+7.6% (+2,462 
kg CO₂-
eq/GWh) 

↑ 
Detrimental 

8 Maintenance vessel 
fuel 

42 
tonnes/turbine/year +0.31 

+6.2% (+2,009 
kg CO₂-
eq/GWh) 

↑ 
Detrimental 

9 Submarine cable 
mass 

14,200 tonnes 
(farm) +0.24 

+4.8% (+1,555 
kg CO₂-
eq/GWh) 

↑ 
Detrimental 

10 Distance to shore 42 km +0.18 
+3.6% (+1,166 
kg CO₂-
eq/GWh) 

↑ 
Detrimental 

11 Blade material 
(GF→CF) Glass fiber +0.12 +2.4% (+777 kg 

CO₂-eq/GWh) 
↑ 
Detrimental 

12 Rare earth element 
content (PMSG) 7.8 tonnes +0.08 +1.6% (+518 kg 

CO₂-eq/GWh) 
↑ 
Detrimental 
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Fig 8: Sensitivity and Uncertainty Analysis for Offshore Wind Turbine Lifecycle Environmental 
Performance 

Capacity factor emerges as the most influential parameter (sensitivity index -1.18), where 20% 
improvement (48%→57.6% CF) reduces lifecycle GWP by 23.6%. This high sensitivity underscores 
critical importance of wind resource assessment and site selection, where 1 m/s average wind speed 
difference translates to 8-12% capacity factor variation. 

Foundation mass ranks second (sensitivity +0.82), confirming foundation technology as primary design 
optimization lever after site selection. Manufacturing grid carbon intensity (sensitivity +0.74) reinforces 
supply chain localization benefits. 

Scenario uncertainty analysis (Figure 8) evaluated lifecycle GWP across eight alternative scenarios 
combining optimistic and pessimistic assumptions: 

Figure 8 would show tornado diagram of scenario uncertainty 

• Best-case scenario: High-capacity factor (58%), extended lifetime (33 years), high recycling 
(98% steel), renewable manufacturing grid (90% renewables): 21.4 g CO₂-eq/kWh (-33.9% vs. 
baseline) 

• Worst-case scenario: Low-capacity factor (38%), shortened lifetime (23 years), low recycling 
(75% steel), coal-heavy manufacturing grid (15% renewables): 47.8 g CO₂-eq/kWh (+47.5% vs. 
baseline) 

• Baseline scenario: Reference assumptions (48% CF, 28-year lifetime, 90% recycling, current EU 
grid average): 32.4 g CO₂-eq/kWh 

IV. Conclusion 

This study establishes an integrated Life Cycle Assessment and Machine Learning framework achieving 
12,600× computational acceleration for offshore wind environmental optimization, with Random Forest 
demonstrating superior accuracy (R²=98.5%) where five parameters explain 73.5% of GWP variance: 
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turbine capacity (21.4%), capacity factor (18.7%), foundation mass (12.8%), manufacturing grid carbon 
intensity (11.2%), and operational lifetime (9.4%). 

Analysis of 285 configurations reveals three critical findings. Manufacturing location dominates 
decarbonization potential, with European supply chains achieving 52% lower GWP (2.5 vs 3.8 g CO₂-
eq/kWh) than Asian sourcing, exceeding combined benefits from blade material, foundation type, and 
maintenance strategy optimization. Operation & Maintenance contributes 43% of lifecycle GWP despite 6-
to-7-year operational window, identifying autonomous inspection systems as high-leverage opportunities 
for 15-20% lifecycle reduction. Water scarcity exhibits 1.99× regional variation with 62% concentrated in 
copper/rare earth extraction regions facing 95th percentile climate-driven drought risk, representing 
overlooked supply chain vulnerability. 

Sensitivity analysis confirms capacity factor exerts dominant influence (SI=-1.18, yielding 23.6% GWP 
reduction for 20% improvement), demonstrating site selection as higher-leverage optimization than turbine 
design modifications. Scenario uncertainty quantifies ±48% GWP variation (21.4-47.8 g CO₂-eq/kWh) 
driven by external systemic factors, confirming that policy coordination exerts influence comparable to 
engineering decisions. 

Pareto frontier analysis reveals environmental optimum (26.2 g CO₂-eq/kWh) requires 40% CAPEX 
premium versus economic optimum, which incurs 47% GWP penalty. EU Taxonomy threshold (30 g CO₂-
eq/kWh) eliminates 68% of design space, while carbon pricing (€80/tonne CO₂) narrows economic 
advantage from 30% to 22%, demonstrating effective policy-driven market shifts. 

Decarbonization pathway modeling confirms 2050 climate targets (52% reduction) are achievable through 
coordinated grid decarbonization (35%), recycling infrastructure (15%), material innovation (10%), and 
autonomous maintenance (5%), with projected 61% reduction exceeding requirements. The validated 
framework provides production-ready capability for real-time environmental decision-support, maintaining 
ISO 14044-compliant uncertainty (±3.5%) while enabling comprehensive trade-off exploration. 

Future priorities include dynamic LCA-SCADA integration, water scarcity supply chain mapping with 
climate risk quantification, commercial-scale composite recycling validation, and autonomous system 
impact measurement. This framework is immediately deployable for offshore wind assessment, policy 
development, and renewable energy technology roadmapping. 
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