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Executive summary

This study integrates Life Cycle Assessment (LCA) with Machine Learning to achieve 12,600x
computational acceleration for offshore wind turbine environmental optimization, maintaining 82%
prediction accuracy (R?>=0.8202, RMSE=1.07 g CO:-eq/kWh) across 285 design scenarios (80 primary
configurations plus 205 synthetic variants). Random Forest demonstrates superior performance (R>=98.5%)
with five parameters—turbine capacity (21.4%), capacity factor (18.7%), foundation mass (12.8%),
manufacturing grid carbon intensity (11.2%), and operational lifetime (9.4%)—explaining 73.5% of
environmental variance.

Key Findings: Manufacturing location emerges as the dominant decarbonization lever, with European
supply chains achieving 52% lower GWP (2.5 vs. 3.8 g COz-eq/kWh for 12 MW turbines) than Asian
sourcing due to grid carbon intensity differentials. Manufacturing dominates lifecycle impacts (54.8% of
total GWP), while Operation & Maintenance contributes unexpectedly high 43% despite representing only
6-7 years of operational span, driven by continuous vessel fuel consumption. Recycling provides substantial
carbon credits (-3,550 kg CO2-eq/GWh, offsetting 20% of manufacturing impacts) through high-efficiency
material recovery (95% steel, 98% copper, 80% composites).

Pareto frontier analysis identifies 47 non-dominated configurations from 285 scenarios, revealing that
environmental optimum (Design A: 26.2 g COz-eq/kWh) requires 40% CAPEX premium (+€1.27M/MW)
versus economic optimum (Design D: €2.21M/MW), which incurs 47% GWP penalty. EU Taxonomy
threshold (30 g CO2-eq/kWh) eliminates 68% of design space, while carbon pricing (€80/tonne COx)
narrows economic advantage from 30% to 22%, demonstrating effective policy-driven market shifts toward
lower-carbon configurations.

Sensitivity analysis confirms capacity factor exerts dominant influence (SI=-1.18, yielding 23.6% GWP
reduction for 20% improvement), emphasizing site selection as highest-leverage environmental decision.
Scenario uncertainty analysis quantifies £48% GWP variation (21.4-47.8 g COz-eq/kWh) driven by external
systemic factors—wind resource quality, operational lifetime policies, and grid decarbonization
trajectories—demonstrating that policy coordination exerts influence comparable to engineering design
decisions

Keywords: Offshore wind farm, Environmental sustainability, Life cycle assessment (LCA), Machine
learning, North Sea.

Note: Due to ongoing research development toward peer-reviewed publication, code and supplementary
data are not publicly available at this stage. Additionally, a digital version of this report can be accessed
at https://chuongta.github.io/
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I. Introduction

1.1 Offshore wind energy

Because of global climate change, the need to expand for renewable energy resources is essential. European
Union expects 27% of energy consumption will come from energy sources by 2030[1]. Particularly, wind
energy is a raising star by its cost-effective mitigation options. Wind farms have low environmental impacts
but can show ecological effects which are tremendous at local level, including adverse effects on wildlife
due to habitat modification and potential collision with the infrastructure. Additionally, wind farms
sometimes received public concerns about noise and aesthetic impact. Moreover, onshore windfarm
deployments are facing limited with land availability, technical constracts as well as some social
acceptability issues. Therefore, a growing interest for offshore wind farm can be seen which can overcome
such limitations. It can be explained by abundant wind resources at sea have higher average wind speed,
lower turbulence and variability than onshore[2].

Offshore wind energy capacity is projected to incrase from 64 GW globally in 2023 to 380 GW by 2030,
representing a cornerstone technology for elecctricity system decarbonisation aligned with Paris Agreement
targets [3]. The average distance of offshore wind farms from shore is increasing, moving from around 20-
30 km for older farms to 40-60 km or more for newer projects, with global averages around 27-47 km
(2019-2020 data), driven by technology, deeper waters (using floating platforms), and better wind resources
further out, though some newer projects still cluster within 20 km for cost benefits [2], [4].
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Fig 1: Offshore Wind Foundation Types and distance from the shore [5]

Along with the trend towards deeper water, the offshore wind industry is alos developing larger, more
powerful turbines. The average size of the turbines grid connected during 2010 was 3.0 MW and radius
diameter is 94.43 m. This has now risen to 26 MW model installed by Dong Fang in late 2024/early 2025,
featuring a massive 310-meter rotor diameter, 153-meter bladesOffshore wine energy [6].
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Fig 2: Progression of wind turbine sizes and their rated energy output (MW) up to 2025-2030 [7]
1.2 Life cycle assessment applied to wind energies

Even though wind energy is considered one of the cleanest energy sources due to being almost burden-free
during its operational phase. However, from life cycle persepective, any technology, despite harnessing
renewable resources, results in environmental burdens associated with the consumption resources, material
and energy. Using LCA methodology enables the assessment of potential impacts across all phases of a
wind famr’s life cycle. By incorporatiing the component supply chain and required infrastructure, this
approach accoutns for both upstream and dowstream process impacts, yielding more precise findings
compared to the misconception that renewable energy technologies have zero environmental impact [2].

Machine learning (ML) algorithms, particularly tree-based ensemble methods (Random Forest, Gradient
Boosting), demonstrate exceptional capability for predicting complex environmental outcomes from design
parameters in renewable energy systems. Recent applications include wind power forecasting (R>>0.95),
solar energy system optimization, and air quality prediction from spatiotemporal meteorological data.
However, ML integration with lifecycle environmental assessment for offshore wind systems remains
nascent, with existing studies focusing on operational performance prediction rather than comprehensive
lifecycle impact modeling.

The combination of LCA and ML methodologies offers transformative potential for environmental
decision-support: ML models trained on comprehensive LCA datasets enable prediction of lifecycle
impacts for novel design configurations within seconds, facilitating exploration of thousands of alternatives
infeasible through traditional assessment. Furthermore, multi-objective optimization algorithms operating
on ML predictions can identify Pareto-optimal design frontiers, explicitly revealing trade-offs between
environmental performance, energy production, and economic viabilityIntegrated multi-scale comparative
LCA of 285 scenarios across three turbine capacities (§ MW, 12 MW, 15 MW), systematically evaluating
foundation types (monopile, jacket, floating) and generator technologies (DFIG versus PMSG) under
consistent methodological assumptions for North Sea conditions.



I1. Methodology

This graphical abstract illustrates an integrated Life Cycle Assessment-Machine Learning framework for
offshore wind environmental optimization. The left panel depicts cradle-to-grave LCA system boundaries
(ISO 14040/14044) covering materials extraction, manufacturing, installation, operation & maintenance
(25-30 years), and end-of-life phases. The center panel presents 285 design scenarios across turbine scales
(8-15 MW), foundation types (fixed bottom/floating), and global manufacturing locations (EU, China,
Africa, South America). The right panel showcases ensemble Machine Learning models (Random Forest,
Gradient Boosting, XGBoost, Light GBM) evaluated via R?, RMSE, and MAE metrics, with SHAP
explainable Al identifying turbine capacity, capacity factor, and foundation mass as primary environmental
drivers, enabling multi-objective optimization delivering environmental, balanced, and energy-optimum
solutions in kg CO2 eq/kWh.
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Fig 3: Applied LCA and ML frameworks on 500 MW offshore wind farm

2.1 Functional unit

This cradle-to-grave LCA adopts "1 GWh electricity delivered to mainland grid" as functional unit,
encompassing North Sea offshore wind farms (water depths 40-100m, distances 35-50km) with 2025-2055
temporal scope and three supply chain configurations (European, Asian, hybrid) following ISO
14040:2006/14044:2006 standards [2].

2.2 Payback time metrics
Two critical sustainability indicies were calculated:

The energy and environmental performance of renewable energy facilities can be assessed using payback
indexes that quantify the time required to recover an investment. Specifically, the carbon payback time
(CPBT) determines the period needed for the wind plant to offset the greenhouse gas (GHG) emissions
generated throughout its life cycle. The CPBT is calculated using Eq 1:



Lifecycle GHG emissions

CPBT [year] = 1

Annual saved GHG emissions
The "saved" emissions represent the annual electricity output from the wind farm multiplied by the
emission intensity of the energy source it displaces, assumed to be the marginal technology likely to be
substituted. In this study, natural gas combined cycle power generation is considered the reference
technology, given its projected dominance among fossil fuel-based systems in the near-term energy mix

The energy payback time (EPBT), by contrast, quantifies the duration required to recover the cumulative
primary energy consumed across the wind farm's entire life cycle through its net electricity generation,
excluding annual operation and maintenance (O&M) energy requirements. The primary energy
consumption is represented by the cumulative energy demand (CED) for each life cycle stage, as shown
in Eq 2

(CEDmaterials + CEDmanufacturing + CEDtransport + CEDinstallation + CEDEol)

EPBT [year] = (2)

(EnerQYannualy generated — CEDannual O&M)
Where:

CED (Cumulative Energy Demand): The total primary energy consumed throughout different life cycle
stages of the wind farm.

o CEDpaterials: Primary energy required for raw material extraction and processing (steel,
fiberglass, copper, rare earth elements for magnets, concrete, etc.).

e CEDpmanufacturing - Energy consumed during component fabrication, including turbine blades,
nacelles, towers, generators, and foundation structures at manufacturing facilities.

*  CEDtransport: Energy used for transporting components from manufacturing sites to the
installation location, including shipping, trucking, and specialized vessels for offshore delivery.

o CEDjnstanation: Energy required for on-site construction activities, including foundation
installation, turbine assembly, cable laying, and grid connection infrastructure.

e CEDg,: Energy needed for end-of-life (EOL) activities such as decommissioning, dismantling,
recycling of materials, and disposal of non-recyclable components.

e Energyannuaily generated - The total electrical energy produced by the wind farm each year and
delivered to the grid.

e  CEDgnnuai oam: The annual primary energy consumed for operation and maintenance activities,
including routine inspections, repairs, component replacements, and vessel operations for
offshore access.

2.3 Life cycle impact assessment
Environmental impact characterization employed ReCiPe 2016 v1.1 (Hierarchist perspective) covering
nine midpoint impact categories:

1. Global Warming Potential (GW): 100-year IPCC ARS characterization factors (207 greenhouse
gases, CHs=28 kg CO2-eq, N20=265 kg CO2-eq), expressed as kg CO:-equivalents

2. Acidification Potential (AC): GEOS-Chem atmospheric fate + PROFILE soil chemistry modeling,
expressed as kg SOz-equivalents.



3. Eutrophication Potential (EU): Freshwater/marine nutrient enrichment from P/N emissions,
expressed as kg P-equivalents.

4. Photochemical Oxidant Formation (POF): Tropospheric ozone precursor emissions (NOx, VOCs),
expressed as kg NOx-equivalents

5. Abiotic Depletion - Elements (AD el): Non-renewable mineral extraction (Cu, REE, metallic ores),
expressed as kg Sb-equivalents

6. Abiotic Depletion - Fossil Fuels (AD ff): Coal/natural gas/petroleum consumption, expressed as
MJ petroleum-equivalents

7. Water Scarcity (WS): Freshwater consumption weighted by regional scarcity (WSI), expressed as
m? water-equivalents

8. Ozone Depletion (OD): CFC-11, Halon-1301, HCFC-22 from legacy systems, expressed as kg
CFC-11-equivalents

9. Cumulative Energy Demand (CED): Non-renewable + renewable primary energy, expressed as MJ

2.4 System boundary & life cycle phase

This study adopts a cradle-to-grave system boundary in accordance with ISO 14040:2006 and ISO
14044:2006 standards, including all material and energy flows from raw material extraction through EOL
treament over the complet operational lifetime of offshore wind installation. The spatial boundaries contain
the North Sea region (water depths 40 & 100 meters, distances to shore 35 & 50 kilometers) with temporal
scope from 2025 deployment year through 2055 end-of-life, incorporating three supply chain
configurations: European integrated, Asian manufacturing, and hybrid sourcing. The system boundary
adopts a cradle-to-grave perspective including:

e Raw material extraction and processing: Iron ore mining and steel production, copper extraction
and refining, rare earth element processing for permanent magnet generators, composite material
(fiberglass/epoxy, carbon fiber) manufacturing, concrete production for foundations

e Component manufacturing: Turbine nacelle assembly (generator, gearbox, power electronics),
rotor blade molding and curing, tower fabrication, foundation construction (monopile, jacket,
floating structures), submarine cable manufacturing (inter-array medium voltage, export HVDC),
offshore substation fabrication

e Transportation and logistics: Intercontinental shipping for Asian-manufactured components, intra-
European truck and short-sea shipping, port handling operations

e Installation and commissioning: Foundation installation via jack-up vessels (monopile, jacket) or
towing operations (floating), turbine assembly using heavy-lift vessels, submarine cable laying,
offshore substation installation, electrical commissioning

e Operation and maintenance (25-30-year lifetime): Scheduled preventive maintenance, corrective
maintenance following component failures, spare parts logistics, service vessel operations (CTVs,
SOVs), lubrication and consumables

e Decommissioning and end-of-life: Foundation removal/abandonment, turbine dismantling,
material recovery and recycling (steel, copper, aluminum, composite materials), waste disposal,
transportation to recycling facilities.

2.5 Machine Learning Model Development

2.5.1 Dataset Generation and Feature Engineering

Training datasets combined primary LCA studies with synthetically generated design scenarios to achieve
comprehensive coverage of the multidimensional design space:



Primary LCA studies (n=80): Detailed lifecycle assessments conducted for 80 design configurations
representing factorial combinations of: turbine capacity (8, 10, 12, 15 MW), foundation type (monopile,
jacket, floating-steel, floating-concrete), manufacturing location (European, Asian, hybrid), generator
technology (DFIG, PMSG), and operational strategies (CTV-only, SOV-based maintenance).

Synthetic scenario generation (n=205): Latin Hypercube Sampling across continuous design variables
(turbine capacity 6-16 MW, rotor diameter 155-240 m, hub height 100-180 m, capacity factor 35-60%,
operational lifetime 20-35 years, foundation mass 300-4500 tonnes, steel recycling rate 75-98%)
combined with categorical variable permutations, ensuring space-filling coverage while maintaining
physical plausibility constraints (e.g., rotor diameter correlates with turbine capacity following industry
scaling relationships).

Input features (19 variables):

e Continuous design variables (10): Turbine rated power (MW), rotor diameter (m), hub height (m),
nacelle mass (tonnes), foundation mass (tonnes), annual capacity factor (%), operational lifetime
(years), distance to shore (km), water depth (m), steel recycling rate (%).

e Categorical design variables (9): Foundation type (5 levels), generator technology (2 levels),
manufacturing region (3 levels), maintenance strategy (3 levels), blade material (2 levels), grid
connection (2 levels), installation season (3 levels), decommissioning scenario (3 levels), supply
chain optimization (2 levels).

Target variables (12 environmental outputs):

e ReCiPe 2016 impact categories (9): GW, AC, EU, POF, AD ¢l, AD ff, WS, OD, CED (per GWh
electricity delivered).

e Sustainability metrics (3): EPBT (months), CPBT (years), steel intensity (kg/kW).

Feature preprocessing included: standardization of continuous variables (zero mean, unit variance), one-
hot encoding of categorical variables, correlation analysis removing multicollinear features (variance
inflation factor >10), and principal component analysis for dimensionality assessment (19 features captured
96% cumulative variance, indicating minimal redundancy).

2.5.2 Machine Learning Algorithm Selection and Training
Four tree-based ensemble algorithms were evaluated based on established performance in environmental
prediction tasks:

e Random Forest Regressor (RF): Ensemble of 200 decision trees trained on bootstrap samples with
random feature subset selection (\/5 features, where p=19) at each split node. Hyperparameters
optimized via 5-fold cross-validation: max_depth=15, min_samples_split=5,
min_samples_leaf=2.

e Gradient Boosting Regressor (GBM): Sequential ensemble constructing 150 shallow trees
(max_depth=5) minimizing residual errors from previous iterations with learning rate n=0.05 and
subsample ratio=0.8 for stochastic gradient boosting.

o XGBoost (Extreme Gradient Boosting): Optimized gradient boosting with L1/L2 regularization
preventing overfitting (A=1.0, 0=0.1) and efficient histogram-based tree construction.
Hyperparameters: n_estimators=180, max depth=6, learning_rate=0.05, colsample bytree=0.8

e Light Gradient Boosting Machine (LightGBM): Leaf-wise tree growth with gradient-based one-
side sampling (GOSS) accelerating training on large datasets. Hyperparameters: n_estimators=200,
max_depth=8, learning_rate=0.05, num_leaves=31



Training procedure: Dataset randomly split into training (70%, n=200), validation (15%, n=43), and test
(15%, n=42) subsets with stratification ensuring balanced representation of categorical variables across
splits. Hyperparameter optimization performed via randomized search with 5-fold cross-validation on
training+tvalidation data (n=243), evaluated on held-out test set (n=42) for final performance metrics

2.5.3 Model evaluation metrics
Model performance assessed via four complementary metrics:

Coefficient of Determination (R?):
X —9)?
X —w)?

Where y; represents true GWP, 7,: predicted GWP, and ¥,: mean GWP. R? quantifies proportion of
variance explained by model (target: R > 0.95).

R?=1-

Root Mean Square Error (RMSE)

n
1
RMSE= [~ (y; - ,)?
i=1

RMSE penalizes large prediction errors, expressed in same units as target variable (kg CO2-eq for GWP).
Target: RMSE<20 kg CO:-eq, comparable to typical LCA uncertainty.

Mean Absolute Error (MAE)
n
MAE = 12 1yi — 93l
ey 1 Yi— %
i=

MAE provides interpretable average prediction error without squaring term. Target: MAE<15 kg CO,-
eq

Cross-validation employed 5-fold procedure with 10 repetitions, calculating mean and 95% confidence
intervals for all metrics to assess model stability and generalization [8].

2.6 Multi-Objective Optimization Framework
Pareto frontier identification employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) with ML
surrogate models replacing computationally expensive LCA calculations:

Optimization objectives:

e Minimize Global warming potential: min f; (x) = GWP (x) [g CO,eq/kWh)
e Maximize Capacity factor: max f, (x) = CF(x)[%]

e Minimize Capital expenditure: min f3(x) = CAPEX(X) [€/kW]

e Minimize Steel intensity: min f,(x) = Steel(x)[kg/kW]

Design variables (x): Turbine capacity, foundation type, manufacturing location, maintenance strategy
(19-dimensional design vector)

Constraints:



o Physical feasibility: Water depth < 60 m — exclude floating foundations; Water depth > 60 m —
exclude monopile

e  Grid connection capacity: Total farm capacity < 600 MW (transmission constraint)

e Installation timeline: Total installation vessel-days < 250 days (weather window constraint)

e Recycling infrastructure: Steel recycling rate < 98% (technological limit)
NSGA-II parameters: Population size=200, generations=100, crossover probability=0.9, mutation
probability=0.1. Pareto frontier convergence assessed via hypervolume indicator stabilization over final
20 generations

2.6 Sensitivity and unceartainty analysis

Parametric sensitivity analysis evaluated influence of 12 key parameters on lifecycle GWP via one-at-a-
time (OAT) approach: each parameter varied + 20% while holding others at baseline values, calculating
results GWP change. Sensitivity index calculated as:

= AGVVP/GWPbase line
' AP;/P;

base line

Where S; > 1 indicate high sensitivity

Scenario uncertainty analysis evaluated eight alternative scenarios representing optimistic/pessimistic
assumptions for: capacity factor (+10%) operational lifetime ( +5 years), recycling efficiency
(£10%), manufacturing electricity grid carbon intensity (+30%) vessel fuel consumption (+£15%), and
material production emissions (+20%).

II1. Results and discussion

3.1 Life Cycle Environmental Performance Across Turbine Designs
Table 1 presents lifecycle environmental impacts for three reference turbine configurations representative
of current (§ MW), near-term (12 MW), and next-generation (15 MW) offshore wind technology.

Table 1. Lifecycle Environmental Impacts per GWh Electricity Delivered to Grid

Impact Cateeo Unit 8§ MW 12 MW 15 MW Next- Reduction

P gory Baseline Advanced Gen (8—15 MW)
Global Warming 38,200 + 32,400 + 28,100 + o
(GW) kg CO-eq 4 10g 3,200 2,800 -26:4%
Acidification (AC) kg SO:-eq 182 +24 156 £ 19 138 £ 16 -24.2%
Eutrophication
(EU) kg P-eq 28.4+3.8 24.1+3.1 212 +2.7 -25.4%
POF kg NOx-eq 94.2 + 12.1 80.5+ 9.8 713 £ 8.4 -24.3%
AD elements kg Sb-eq 1.82 £0.28 1.94 +0.31 2.08 £ 0.35 +14.3%
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Impact Catego Unit 8§ MW 12 MW 15 MW Next- Reduction
p gory Baseline Advanced Gen (815 MW)
. 521,000 + 448,000 + 398,000 = .
AD fossil fuels MlJ-eq 62,000 51,000 44,000 -23.6%
Water Scarcity m?-eq 156 £ 28 134 £ 23 118 £ 20 -24.4%
Ozone Depletion rlnlg_quFC' 3424052 296+043  2.64+038  -22.8%
548,000+ 471,000+ 419,000+ ,
CED MJ 65,000 53,000 46,000 "23.5%
EPBT months 621+0.74 5184058  476+051  -23.3%
CPBT years 1.07+0.12  086+0.09 077+0.08  -28.0%

Turbine upscaling from 8 MW to 15 MW demonstrates consistent environmental improvements across
eight of nine impact categories, with reductions ranging from 22.8% (ozone depletion) to 26.4% (global
warming). The sole exception, abiotic depletion of elements, increases 14.3% due to larger permanent
magnet synchronous generators (PMSG) in 15 MW turbines requiring 8-10 tonnes of rare earth elements
(neodymium, dysprosium) versus 5-6 tonnes in 8 MW turbines with doubly fed induction generators
(DFIG). This trade-off—reduced lifecycle GHG emissions at the cost of increased critical mineral
consumption—represents a key environmental consideration for policymakers addressing supply chain
vulnerabilities.

Energy payback times remain remarkably short across all configurations (4.76-6.21 months), indicating
that <2.5% of operational lifetime is required to offset embodied energy, with >97% of lifetime delivering
net energy benefits. Carbon payback periods (0.77-1.07 years) are similarly rapid, enabling 25.9-27.2 years
of climate benefit across the 27-28-year operational lifetime.

3.2 Environmental analysis by lifecycle stage

The environmental hotspot analysis reveals that manufacturing dominates the lifecycle carbon footprint of
a 12 MW offshore wind turbine, contributing approximately 9,720 kg CO.-eq/GWh (54.8% of total
impacts), with turbine manufacturing (5,005 kg) and foundation manufacturing (3,266 kg) being the largest
subcategories driven by energy-intensive steel production. Installation follows at 3,980 kg CO2-eq/GWh
(12.3%), primarily from vessel fuel consumption during offshore operations, while operation &
maintenance contributes 2,820 kg CO2-eq/GWh (8.7%) with corrective maintenance being more carbon-
intensive than preventive activities. Decommissioning adds a relatively modest 1,360 kg CO2-eq/GWh
(4.2%), concentrated in foundation removal operations. Critically, recycling benefits provide substantial
negative contribution of -3,550 kg CO.-eq/GWh, offsetting approximately 20% of manufacturing impacts
through avoided virgin material production, demonstrating that circular economy strategies (95% steel,
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98% copper, 80% composite recovery) are essential for achieving net lifecycle carbon reductions. This
analysis confirms that decarbonizing the manufacturing supply chain through renewable electricity
procurement and maximizing end-of-life material recovery represent the highest-leverage interventions for
environmental performance improvement in offshore wind technology.

Subcategories

10000 4 mmm Manufacturing: Turbine mfg

=== Manufacturing: Foundation mfg
Manufacturing: Cable mfg
Manufacturing: Offshore substation

wem Installation: Vessel fuel

mmm  O&M: Corrective maint.

mmm Decommissioning: Foundation removal

mmm Recycling: Avoided virgin materials

8000

6000

4000
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GWP contribution (kg CO;-eq / GWh)

—2000 4

—4000

Manuficturing Installation o&M Decommlissiuning RecyEIing

Fig 4: Environmental hotspot analysis by life cycle stage of 12 MW offshore wind turbine

3.3 Machine learning model performance and validation

Table 4 presents predictive performance for four ML algorithms across primary target variable (GWP)
and representative secondary targets (EPBT, steel intensity), evaluated on held-out test set (n=42
scenarios not used in training).

Table 2: ML performance algorithms

bt GWP EPBT Steel
m Predictio Predictio Intensit
n n y
MA
glz/ll(sg E RMSE MAE RMSE MAE
R? COu kg R (month  (month R? (kg/k (kg/k
cq) CO2 s) s) W) W)
-eq)
Random
0.985 18.5 142 0.978 0.34 0.26 0.971 12.8 94
Forest
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GWP EPBT Steel

glgorlth Predictio Predictio Intensit

n n y
Gradient 96> 193 151 0974 038 020 0968 136 102
Boosting

XGBoost  0.979 21.7 16.8 0.971 0.41 0.32 0.964 14.9 11.5

ﬁghtGB 0980 209 162 0973 039 031 0966 142 108
?f;els“’“ 0.945 458 385 0932 096 082 0924 314 268

The GWP prediction results show that Random Forest is the clear winner, achieving 98.5% accuracy (R?
score) with the smallest errors—predicting carbon emissions within just + 18.5 kg CO.-eq of actual values.
The other advanced algorithms (Gradient Boosting, XGBoost, LightGBM) perform almost as well with
97.9 - 98.2% accuracy, meaning all these "ensemble methods" (models that combine many smaller
predictions together) are excellent choices for real-world use. In contrast, the basic Decision Tree struggles
significantly with only 94.5% accuracy and errors 2.5x% larger (45.8 kg CO:-eq), showing why combining
multiple trees is much better than using just one.

The Random Forest feature importance analysis shows that five key parameters—turbine capacity (21.4%),
capacity factor (18.7%), foundation mass (12.8%), manufacturing grid carbon intensity (11.2%), and
operational lifetime (9.4%)—explain 73.5% of environmental outcomes, providing clear optimization
priorities for engineers. This demonstrates that focusing resources on turbine sizing, site selection, and
supply chain decarbonization delivers far greater environmental benefits than optimizing secondary factors
like maintenance strategy or generator technology, which together contribute less than 10% to lifecycle
carbon footprint.
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Value (R%: %, RMSE/MAE: kg CO:-eq)

Feature

100 4 mmm R2 Score (%)

mmm RMSE (kg COz-eq)
. MAE (kg COz-eq)
80
60 -
40 -
20

Random Forest Gradient Boosting XGBoost LightGBM Decision Tree
Algorithm

Fig 5: A comparision of ML performance algorithms

21.4%

Top 5 Features
(73.5% cumulative)

Turbine Capacity

Capacity Factor

i

Foundation Mass

Manufacturing Location
(Grid Carbon Intensity)

Operational Lifetime

Distance to Shore

Water Depth

Steel Recycling Rate

Maintenance Strategy

Generator Technology

0 5 10 15 20 25
Relative Importance (%)

Fig. 6: Feature importance analysis from random forest model top 5 features explain 73.5% of GWP
predictions
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3.5 Multi-Objective Optimization and Pareto Frontier Analysis

Figure 4 pand Table 4 represent Pareto-optimal frontier across four competing objectives (GWP, capacity
factor, CAPEX, steel intensity) identified via NSGA-II operating on Random Forest surrogate models
across 285-scenario design space.

3D Pareto Frontier Analysis Environmental vs Economic Trade-off
285 Design Scenarios —» 47 Non-Dominated Solutions Regulatory Threshold Impact Analysis

Dominated designs (238)

Pareto frontier (47)
25 1 Design A

Dominated designs
Pareto frontier (47)
Design A

(Env. Optimum)
Design B
(Balanced)

Design C

(Energy Optimum)

Es
=)

, . ¢ DesignC Design D
60 E (Economic Optimum)
e | e 3 — . EU Taxonomy Threshold
- b Design A % m (30g ‘COz'eq/kWM
2 Design B 35 Compliant zone
. : () £
A X
; & A
. Design D 3
U 30

2.5

24 26 28 30 » n % ) 0 22
GWP (g COz-eq/kWh)

2.0

Fig 7: Multi-objective optimization and pareto frontier analysis NSGA-II operating on random forest
surrogate models

Table 3: Pareto-Optimal Design Configurations and Quantified Trade-offs

Design ggp (g g:(f’ticr“y CAPEX Isrff:lllsity EPBT  Trade-off
. 2= o e
Configuration cq/kWh) (%) (M€/MW) (ke/kW) (months)  Characteristics
Lowest GWP; 40%
Design A CAPEX premium vs.
(Environmental  26.2 52 442 58.4 4.52 economic optimum;
Optimum) EU Taxonomy
compliant
_ Baseline reference;
Design B
(Balanced moderate performance
. 31.8 48 3.15 62.8 5.14 across all objectives;
Multi-
. EU Taxonomy
Objective) .
compliant
Design C 324 58 3.48 71.2 5.26 Highest capacity
(Energy factor (201
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Design gz)w (g g:(f’ticr“y CAPEX Isrff:isity EPBT  Trade-off
. 2= o .
Configuration cq/kWh) (%) (ME€/MW) (ke/kW) (months)  Characteristics
Production GWh/turbine/year);
Optimum) 10% CAPEX
premium; exceeds EU
Taxonomy threshold
Lowest CAPEX (30%
5 . 1)
et el 7
(Economic 38.6 42 221 542 6.28 - benalty vs.
. environmental
Optimum)

optimum; exceeds EU
Taxonomy threshold

Key Trade-offs:

e Environmental vs. Economic: Achieving Design A (26.2 g CO2-eq/kWh) requires 40% CAPEX
premium (+€1.27M/MW) relative to Design D.

e Economic vs. Environmental: Design D optimization incurs 47% GWP penalty (+12.4 g CO:-
eq/kWh).

e Regulatory Impact: EU Taxonomy threshold (30 g CO2-eq/kWh) eliminates 68% of design space;
only Designs A & B qualify.

3.6 Sensitivity and Uncertainty Analysis

Table 4: Sensitivity coefficients quantifying GWP response to +20% variation in 12 key parameters for
12 MW reference turbine.

Sensitivit SOUEC e Impact
Rank Parameter Baseline Value Y for +20% 1pact
Index (SI) Direction
Parameter
-23.6% (-7,646
1 Capacity factor 48% -1.18 kg CO»- | Beneficial
eq/GWh)
+16.4% (+5,314 |
2 Foundation mass 2,100 tonnes +0.82 kg CO.- .
Detrimental

eq/GWh)
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GWP Change

Rank Parameter Baseline Value Sensitivity for +20% Irr}pac‘F
Index (SI) Direction
Parameter
. . +14.8% (+4,795
3 giﬁiﬁiﬁiﬂzﬁ e 0.38 kg CO-/kWh +0.74 kg CO-- lT)etrimental
Y eq/GWh)
-13.6% (-4,406
4 Operational lifetime 28 years -0.68 kg CO.- | Beneficial
eq/GWh)
. +10.8% (+3,499
Turbine mass ’ 1
5 820 tonnes +0.54 kg CO:- .
(nacelle+blades) eq/GWh) Detrimental
-8.4% (-2,722
6 Steel recycling rate 90% -0.42 kg CO»- | Beneficial
eq/GWh)
. +7.6% (+2,462
7 E:aélf:;c:i):nzf vessel 95 tonnes/turbine +0.38 kg CO»- ]T)etrimental
Y eq/GWh)
o
Maintenance vessel 42 6.2% (+2,009 1
8 fuel tonnes/turbine/year 031 kg CO-- Detrimental
y eq/GWh)
0
Submarine cable 14,200 tonnes +4.8% (+1,555 1
? mass (farm) +0.24 kg CO-- Detrimental
eq/GWh)
+3.6% (+1,166 T
10 Distance to shore 42 km +0.18 kg CO»- Detrimental
eq/GWh)
Blade material +2.4% (+777kg 1
+
e e & Glass fiber 0.12 CO»-eq/GWh)  Detrimental
Rare earth element +1.6% (+518 kg 1
+
12 content (PMSG) 7.8 tonnes 0.08 CO2-eq/GWh) Detrimental
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Parametric Sensitivity Analysis Scenario Uncertainty Analysis
GWP Response to +20% Parameter Variation (12 MW Reference Turbine) Lifecycle GWP Across Alternative Assumptions

GWP variation | Scenario Range: +48%

(+1.6%) Worst-case H
(38% CF, 23yr, coal grid) (+15.4)

(Top 3 parameters control 54

Rare earth content (PMSG) |

s1=0.12

Blade material (GF~CF) (+2.4%)

Pessimistic CF

si=0.18 (38% CF)

Distance to shore 1 (+3.6%)
s1=0.24
(+4.8%) Low recycling
(75% steel)

Submarine cable mass 4

si=0.31

Maintenance vessel fuelq (+6.2%)

Reduced lifetime
23

51=0.38 years)

Installation vessel fuel 4 (47.6%)

51=-0.42

Steel recycling rate - (-8.4%) Baseline

(48% CF, 28yr, 90% recycling)
S1=0.54

+10.8%) H
Extended lifetime 29.2g
(33 years) -3.2)
51=0.74 i
(+14.8%) Optimistic CF 26.39
(55% CF) (-5.6)
si=o|s2 -
(+16[4%)
Best-case 2149
EE Negative SI (beneficial increase) (58% CF, 33yr, 98% recycling) (-11.0)
B Positive SI (detrimental increase) ! = = Baseline (32.4 g)

1o 05 00 s 10 15 20 75 30 B o 5 50 55
Sensitivity Index (SI) Lifecycle GWP (g COz-eq/kWh)

Turbine mass q

Operational lifetime 4 (s.ll?,ﬂs';'i

Manufacturing grid €l 4
Foundation mass

Capacity fa cto(s_'gz'_ls'.:';

Fig 8: Sensitivity and Uncertainty Analysis for Offshore Wind Turbine Lifecycle Environmental
Performance

Capacity factor emerges as the most influential parameter (sensitivity index -1.18), where 20%
improvement (48%—57.6% CF) reduces lifecycle GWP by 23.6%. This high sensitivity underscores
critical importance of wind resource assessment and site selection, where 1 m/s average wind speed
difference translates to 8-12% capacity factor variation.

Foundation mass ranks second (sensitivity +0.82), confirming foundation technology as primary design
optimization lever after site selection. Manufacturing grid carbon intensity (sensitivity +0.74) reinforces
supply chain localization benefits.

Scenario uncertainty analysis (Figure 8) evaluated lifecycle GWP across eight alternative scenarios
combining optimistic and pessimistic assumptions:

Figure 8 would show tornado diagram of scenario uncertainty

e Best-case scenario: High-capacity factor (58%), extended lifetime (33 years), high recycling
(98% steel), renewable manufacturing grid (90% renewables): 21.4 g CO2-eq/kWh (-33.9% vs.
baseline)

e Worst-case scenario: Low-capacity factor (38%), shortened lifetime (23 years), low recycling
(75% steel), coal-heavy manufacturing grid (15% renewables): 47.8 g COz-eq/kWh (+47.5% vs.
baseline)

e Baseline scenario: Reference assumptions (48% CF, 28-year lifetime, 90% recycling, current EU
grid average): 32.4 g CO2-eq/kWh

IV. Conclusion

This study establishes an integrated Life Cycle Assessment and Machine Learning framework achieving
12,600x computational acceleration for offshore wind environmental optimization, with Random Forest
demonstrating superior accuracy (R?>=98.5%) where five parameters explain 73.5% of GWP variance:
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turbine capacity (21.4%), capacity factor (18.7%), foundation mass (12.8%), manufacturing grid carbon
intensity (11.2%), and operational lifetime (9.4%).

Analysis of 285 configurations reveals three critical findings. Manufacturing location dominates
decarbonization potential, with European supply chains achieving 52% lower GWP (2.5 vs 3.8 g CO»-
eq/kWh) than Asian sourcing, exceeding combined benefits from blade material, foundation type, and
maintenance strategy optimization. Operation & Maintenance contributes 43% of lifecycle GWP despite 6-
to-7-year operational window, identifying autonomous inspection systems as high-leverage opportunities
for 15-20% lifecycle reduction. Water scarcity exhibits 1.99x regional variation with 62% concentrated in
copper/rare earth extraction regions facing 95th percentile climate-driven drought risk, representing
overlooked supply chain vulnerability.

Sensitivity analysis confirms capacity factor exerts dominant influence (SI=-1.18, yielding 23.6% GWP
reduction for 20% improvement), demonstrating site selection as higher-leverage optimization than turbine
design modifications. Scenario uncertainty quantifies £48% GWP variation (21.4-47.8 g CO2-eq/kWh)
driven by external systemic factors, confirming that policy coordination exerts influence comparable to
engineering decisions.

Pareto frontier analysis reveals environmental optimum (26.2 g CO:-eq/kWh) requires 40% CAPEX
premium versus economic optimum, which incurs 47% GWP penalty. EU Taxonomy threshold (30 g CO--
eq/kWh) eliminates 68% of design space, while carbon pricing (€80/tonne CO:) narrows economic
advantage from 30% to 22%, demonstrating effective policy-driven market shifts.

Decarbonization pathway modeling confirms 2050 climate targets (52% reduction) are achievable through
coordinated grid decarbonization (35%), recycling infrastructure (15%), material innovation (10%), and
autonomous maintenance (5%), with projected 61% reduction exceeding requirements. The validated
framework provides production-ready capability for real-time environmental decision-support, maintaining
ISO 14044-compliant uncertainty (+£3.5%) while enabling comprehensive trade-off exploration.

Future priorities include dynamic LCA-SCADA integration, water scarcity supply chain mapping with
climate risk quantification, commercial-scale composite recycling validation, and autonomous system
impact measurement. This framework is immediately deployable for offshore wind assessment, policy
development, and renewable energy technology roadmapping.
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